Future Challenges for Artificial Neural Network Modelling in Geotechnical Engineering
نویسندگان
چکیده
Artificial neural networks (ANNs) are a form of artificial intelligence and, since the mid-1990s, ANNbased models have been successfully applied to virtually every problem in geotechnical engineering. This paper briefly examines the areas of geotechnical engineering to which ANNs have been applied, provides a brief overview of the operation of ANN models, and highlights and discusses four important issues which require further attention in the future. These are model robustness, transparency and knowledge extraction, extrapolation, and uncertainty. For ANN models to be more effective and useful in the future, it is essential that further work be undertaken in these four areas, particularly in the context of geotechnical engineering.
منابع مشابه
Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications
Artificial neural networks (ANNs) are a form of artificial intelligence that has proved to provide a high level of competency in solving many complex engineering problems that are beyond the computational capability of classical mathematics and traditional procedures. In particular, ANNs have been applied successfully to almost all aspects of geotechnical engineering problems. Despite the incre...
متن کاملArtificial Neural Network Applications in Geotechnical Engineering
Over the last few years or so, the use of artificial neural networks (ANNs) has increased in many areas of engineering. In particular, ANNs have been applied to many geotechnical engineering problems and have demonstrated some degree of success. A review of the literature reveals that ANNs have been used successfully in pile capacity prediction, modelling soil behaviour, site characterisation, ...
متن کاملA New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort
Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...
متن کاملModelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network
Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...
متن کاملForecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique
Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...
متن کامل